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Abstract We present an elementary method to obtain
Green’s functions in non-perturbative quantum field theory
in Minkowski space from Green’s functions calculated in
Euclidean space. Since in non-perturbative field theory the
analytical structure of amplitudes often is unknown, espe-
cially in the presence of confined fields, dispersive repre-
sentations suffer from systematic uncertainties. Therefore,
we suggest to use the Cauchy–Riemann equations, which
perform the analytical continuation without assuming global
information on the function in the entire complex plane, but
only in the region through which the equations are solved.
We use as example the quark propagator in Landau gauge
quantum chromodynamics, which is known from lattice and
Dyson–Schwinger studies in Euclidean space. The draw-
back of the method is the instability of the Cauchy–Riemann
equations against high-frequency noise,which makes it dif-
ficult to achieve good accuracy. We also point out a few
curious details related to the Wick rotation.

PACS 11.10.St · 11.55.Bq

1 The Wick rotation

Central to non-perturbative quantum field theory is the com-
putation of Green’s functions, the vacuum expectation value
of quantum operators. These and the related scattering ma-
trix elements are most often computed in Euclidean space,
defined by the transformation

t → −itE, k0 → ik0. (1)

This coordinate transformation is known as “Wick rotation”
(see for example [1] for a short account). There are many
advantages in solving the field equations in terms of the ro-
tated variables to obtain the so-called Schwinger functions,
and we list some in Sect. 2.
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Once the wanted functions have been computed in
Euclidean (momentum) space kE = (ik0,k) one would wish
to recover the original Minkowski space Green’s functions
by inverting the Wick rotation. This is possible in pertur-
bation theory at low orders [2, 3] where one has explicit
expressions for the functions, and their analytical struc-
ture (poles, cuts, essential singularities) is at hand, so that
one can employ Cauchy’s theorem and collect dispersive
cut integrals or pole residues, if need be, and obtain the
Minkowski space Green’s function by analytical continu-
ation.

For example, to obtain the electron propagator in momen-
tum space (Fourier transform of the probability amplitude
for the electron to reach point x if it was originally at the
origin 0),

S(p) =
∫

d4x e−ix·pS(x,0) = iZ
(
p2) � p + M(p2)

p2 − M2(p2) + iε
,

(2)

one would perform the Wick rotation p0 → ip0E and ob-
tain a function S(pE) as a perturbation of its free-field val-
ues (M(p2) = m, Z(p2) = 1). With the function explicitly
known, one just extends it into the complex plane and sim-
ply substitutes its argument p0E by −ip0. If the function is
not fully known but its analytical structure is, one employs
Cauchy’s theorem, as mentioned.

However, in non-perturbative quantum field theory one is
seldom in this desirable situation. More often than not, the
function has been calculated with the help of a computer, be
it by solving the Dyson–Schwinger equation [4] with some
carefully designed truncation, or by trying a Monte Carlo
evaluation averaging over a small number of configurations
on a lattice [5].

The outcome is that the function is then known for
Euclidean momenta, typically k2

E > 0, and an extension into
the complex plane becomes necessary to reach the negative
axis k2

E < 0 and k2
E = −k2. For non-perturbative functions
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one sometimes ignores the precise analytic structure in the
complex plane. This situation is worsened in theories where
the field quanta do not appear in asymptotic states, except in
very specific combinations, such as is presumably the case
for quantum chromodynamics.

Attempts have of course been made to solve the problem.
An obvious approach is to perform a theory-motivated fit to
the computer data, using built-in well educated guesses on
what the analytical structure of the continued function must
be [6, 7].

Another possibility is to write a spectral representation in
terms of a Stieltjes transform yielding a spectral density ρ,

S
(
p2) =

∫
dp

ρ(m2)

p2 − m2 + iε
(3)

(we have eliminated the spin structure) and then solving the
Dyson–Schwinger equation directly “in Minkowski space”
for ρ, finally inverting the Stieltjes transform to recover the
propagator or Bethe–Salpeter wanted function [8–11]. It is
of course clear that in writing the spectral representation,
one is already assuming a given cut structure for the func-
tion. It is known that, for local quantum field theories where
the quanta appear in the final state, the propagator in coordi-
nate space in the upper-half x complex plane is analytic [3],
but for confined quanta many questions remain.

In this paper we enrich the toolbox by putting forward a
very simple method that does not require the function’s ana-
lytical structure to be known on the entire complex plane.
We observe that the analyticity of a given function can-
not only be formulated globally, through satisfaction of
Cauchy’s theorem, but also locally, through satisfaction of
the Cauchy–Riemann equations. By integrating this simple
first order differential system with initial condition the func-
tion in a given region computed by other means (DSE, lat-
tice, exact renormalization group equations, etc. [12–15]),
one can achieve two goals. First, the numerically obtained
solution can break down at a given point or line in the plane,
indicating perhaps a pole or other singularity. Second, if the
region where the system is integrated avoids such singular-
ities, one can obtain the analytical extension (within errors
and non-uniqueness) to another region in the complex plane.

We use as an example the behavior of the quark mass
function in Landau gauge QCD, M(p2), that we analyti-
cally continue from positive Euclidean virtuality (p2 > 0)
into Minkowski space with (p2 < 0). This is plotted in Fig. 1
It can be seen that, within the statistical errors inherited from
the lattice data and the systematic numerical errors intrinsic
to our procedure, the mass function decreases with increas-
ing Minkowski p2. Our result keeps open the possibility of a
pole of the quark propagator for real p2 (whose absence has
been at times thought of as a possible sign of confinement).

The rest of the paper consists of four sections. In Sect. 2
we make a few comments, some common place but others

Fig. 1 The analytical continuation to negative Euclidean squared mo-
mentum (positive quark virtuality in Minkowski space) of the Lan-
dau gauge quark mass function. The yellow band is obtained with
input from an Euclidean Dyson–Schwinger calculation, where the
Cauchy–Riemann equations have been solved with the θ method in
different grids. The Lattice data are likewise analytically continued
with the Cauchy–Riemann equations. At low p2 the error is domi-
nated by the original lattice statistical error, and eventually the build-up
of numerical errors in the Cauchy–Riemann equations dominate. The
trend of Re(M) is clearly decreasing with p2, and therefore a pole in
the quark propagator is expected. Since Im(M), presented later on, is
small, this pole is on or close to the real axis, with M = 305(25) MeV.
The lattice data that are analytically continued are from Ref. [15]

quoted less often, about the advantages of initially work-
ing in Euclidean space. In Sect. 3 we present the Cauchy–
Riemann method with one practical case, the quark propa-
gator. A few theoretical comments about errors involved in
the process and the generalization to more dimensions are
left for Sect. 4. Our discussion is summarized in Sect. 5.

2 Working in Euclidean space

In lattice formulations of quantum field theory, the field con-
figurations over which the path integral is evaluated are ran-
domly generated according to a distribution e− ∫

dt L, which
is the Wick rotation of the actual quantum weight for the
path integral, ei

∫
dt L. Green’s functions computed thereafter

on the lattice are valid in Euclidean space. Even if working
in Minkowski space, a popular way of “minimally” regu-
larizing in the path integral formalism is to rotate the time
integration into the complex plane,

∫
d4x = lim

T →∞

∫ T ×(1+iε)

−T ×(1−iε)
dt

∫
d3x.

Beyond the convergence of the path integral and the
weighting configurations inside a compact set of function
space, there are several more advantages.
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One is that the Dyson–Schwinger equations, whose so-
lutions are often used to interpret the lattice data, are ex-
tremely difficult to solve on a computer in Minkowski space.
Indeed, a typical DSE is that for the mass function of a
fermion in the presence of a scalar field, with Yukawa cou-
pling, in the rainbow approximation:

M(p) = c

∫
d4k

M(k)

(k2 − M(k)2 + iε)((k − p)2 − m2
φ + iε)

.

(4)

If one solves the equation iteratively by guessing M0, one
notices that the position of the fermion pole in the denom-
inator is not known after the first iteration, and it needs to
be determined numerically (an attempt at carrying on this
program exists [16]).

However, it is common use to Wick rotate the k integra-
tion variable to Euclidean space. If p is likewise rotated, the
resulting equation is easier to program as the denominator
poles are on the left k2 plane, out of the numerical integra-
tion region in the radial k2 variable. We have

M(p) = c

∫
d4k

M(k)

(k2 + M(k)2 + iε)((k − p)2 + m2
φ + iε)

(5)

(c represents constants irrelevant to the discussion).
Note also that when working in Euclidean space, a dis-

crete subgroup of the Euclidean rotation group is retained.
For example, for a simple cubic lattice with (x = aix, y =
aiy, z = aiz, t = ait ), invariance under rotations by π/2 is
explicit. This can be exploited to study the quantum repre-
sentations of the discrete group, then trying to match the
resulting states to a representation of the full continuous
group.

However, in Minkowski space there is no finite lattice
that retains invariance under a non-trivial subgroup of the
Lorentz group. If a grid is invariant under discrete Lorentz
transformations of the parameter a, then it has infinitely
many points. We discuss Lorentz invariant discretizations of
Minkowski space in the appendix.

One further motivation is the non-compactness of the
equal k2 hypersurfaces. While in Euclidean space the condi-
tion k2 = Λ2 determines a hypersphere’s surface, so that

∫ Λ

d4kE f
(
k2

E

) = 2π2
∫ Λ

k3
E dkE f

(
k2

E

)
(6)

can be factorized into a radial integral and a finite 2π2 solid
hyperangle (the hyperarea of a unit-radius hypersphere’s
surface), this is not possible in Minkowski space. In this
space, the corresponding unit-hyperboloid k2 = 1 has infi-
nite hypersurface. Therefore, integrals of Lorentz invariant
functions are by necessity divergent even after regulation

of large virtualities, and they are only defined by analytical
continuation from Euclidean space.

In perturbation theory, a much used method is to perform
the k0 integrals first, usually with a pole analysis, and later
impose a cutoff on space-like momentum k. However, this
cutoff is frame-dependent, and there is no direct method that
manifestly preserves Lorentz invariance.

From all these arguments, it is hard to conceive progress
in non-perturbative quantum field theory in Minkowski
space without progress in complex-plane analytical contin-
uation for the relevant functions. This paper is a modest
contribution in this direction, with the interest in keeping
the discussion alive.

3 Numerical solution of the Cauchy–Riemann
equations

3.1 Cauchy–Riemann equations in polar coordinates

If u and v are respectively the real and imaginary parts of
a complex function of one complex variable p2 = reiθ , the
Cauchy–Riemann equations in polar coordinates read

∂v

∂θ
= r

∂u

∂r
, (7)

∂u

∂θ
= −r

∂v

∂θ
. (8)

Given the initial conditions u(r,0) = u0(r) and v(r,0) =
v0(r) on a segment of the real p2 axis, corresponding to
θ = 0, one can then evolve the system towards increasing
and decreasing θ (like the opening of a fan). For very smooth
data sets one can typically reach 90–120 degrees on each
side of the fan before the instabilities wipe the solution to in-
finity. The (Cauchy–Euler) explicit discretization with cen-
tered r-derivative on a grid (rj , θi) is simply

v(rj , θi+1) = v(rj , θi)

+ rj (θi+1 − θi)
u(rj+1, θi) − u(rj−1, θi)

rj+1 − rj−1
,

(9)

u(rj , θi+1) = u(rj , θi)

− rj (θi+1 − θi)
v(rj+1, θi) − v(rj−1, θi)

rj+1 − rj−1
,

(10)

where, to solve over an arch taken anticlockwise, (θi+1 −
θi) > 0. At the end-points of the grid one cannot use
centered derivative, so left (right derivative) is necessary,
(v(r2, θi) − v(r1, θi))/(r2 − r1), etc. The situation is repre-
sented in Fig. 2.



560 Eur. Phys. J. C (2008) 56: 557–569

Fig. 2 The Cauchy–Riemann equations in polar coordinates allow us
to explore a fan-shaped region of the complex plane where a function
is analytic

The use of this method is to provide a cross-check of
solutions of the Dyson–Schwinger equations in the com-
plex plane. These are needed to solve the Bethe–Salpeter
equations for mesons, since the (external) meson momen-
tum is of course in Minkowski space (real), and the internal
quark momentum is Wick rotated to Euclidean space (imag-
inary), so that one ends solving the DSE inside a parabola
in the complex plane symmetric with respect to the real mo-
mentum axis. The Cauchy–Riemann equations are currently
no match in precision to directly solving the DSE in the
complex plane where this is feasible, but they can provide
a cross-check that is very simple to programme (compare
the trivial linear system above with the complex, non-linear,
bidimensional DSE when the angular kernel or vertex are
non-trivial).

The Cauchy–Riemann equations, however, are a state-
ment of analyticity, and the solution is a numerical repre-
sentation of the closest analytical function that contains the
initial data. This means that if the “true” function has a pole
or a cut, the Cauchy–Riemann iteration will fail to see it and
simply separate from that function, and it is likely to diverge
soon from accruing instabilities. This is illustrated in Fig. 3.

3.2 Cauchy–Riemann equations on a strip

The advantage of a local formulation of analyticity employ-
ing the Cauchy–Riemann equations is lost if one needs to
sweep the entire complex plane. Therefore, it is profitable to
solve them in Cartesian coordinates, first away from the x

axis along y,

∂u

∂y
= − ∂v

∂x
, (11)

∂v

∂y
= ∂u

∂x
, (12)

Fig. 3 Real and imaginary part of the function 1
1+z4 for z = reiθ with

fixed r = 0.99 and varying θ . The dashed line is the computer solu-
tion of the Cauchy–Riemann equations in degree steps, with the initial
condition given on the positive real half-axis. The function has a pole
at (1 + i)/

√
2 that the Cauchy–Riemann equations cannot isolate since

they entail analyticity. They, however, diverge due to accruing instabil-
ity in the region where the function has a larger derivative

and then leftwards along x. The method fails if the complex
plane is completely cut from −∞ to ∞ along the y axis. In
any other situation (the standard half-plane cut of a power-
law or logarithm, or a finite number of poles or essential
singularities), one can find a path between the right and the
left x axis and solve the Cauchy–Riemann equations along
them.

We now improve upon the discretization of the differ-
ential equations and employ an implicit θ method. This is
convenient, since the Cauchy–Riemann equations are quite
unstable (as pointed out below in Sect. 4.2). The ∂yu equa-
tion for a point not on the edge of the grid becomes (with
the superindex labeling y, the subindex x)

u
j+1
i − u

j
i

yj+1 − yj

= −1

xi+1 − xi−1

× (
θ
(
v

j+1
i+1 − v

j+1
i−1

) + (1 − θ)
(
v

j

i+1 − v
j

i−1

))
.

(13)
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In the advance along y one groups the ui and vi for fixed
yj in a vector uj = (u

j

1, v
j

1 , u
j

2, v
j

2 , . . . , u
j
N , v

j
N) and the θ

method’s discretization can be written down as a linear prob-
lem

Auj+1 = Buj . (14)

In the simplest case of equal x subintervals, one can de-
fine r = θ	y/(2	x), then the matrix A becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −2r 0 2r 0 . . .

2r 1 −2r 0 . . .

0 −r 1 0 0 r . . .

r 0 0 1 −r 0 . . .

· · ·
. . . 0 −2r 1 2r

. . . 0 2r 0 −2r 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(15)

where the third and fourth line are the repeated unit, ex-
cept that the non-vanishing elements are shifted to the right
(the 1 always mark the diagonal, and the matrix is band-
diagonal). The matrix B can likewise be filled by exchanging
θ → (1 − θ) and changing the sign of all off-diagonal ma-
trix elements of A (the diagonal of B likewise contains 1).

The advance in y proceeds by solving the linear system to
obtain (u, v) at yj+1 from their values at yj . We use a stan-
dard LU factorization, although since the matrix A is band-
diagonal, Crout’s algorithm can speed things somewhat. For
one complex variable and the small number of points we
use, this is irrelevant in computer time.

However, since the advance to the left will have as initial
condition the edge (along the y axis) of the first computed
block, and in the end we will be interested in the values of
the function on the x axis, that is, the edge of the second
computed block, it pays off to improve the computation of
the derivative at the edge of the block.

The left derivative we have displayed explicitly,

∂u(x = 0, y)

∂x
= u

j

2 − u
j

1

x2 − x1
+ o(h) (16)

can be interpreted as a centered derivative at the mid-point
(x2 + x1)/2. Considering also the centered derivative at x2

and extrapolating linearly to x1, one obtains an improved

∂u(x = 0, y)

∂x
= 2

u
j

2 − u
j

1

x2 − x1
− u

j

3 − u
j

1

x3 − x1
+ o

(
h2), (17)

and likewise at the last N point of the grid, and this slightly
complicates the first two and last two rows of A.

Once the advance upwards in the y direction has
reached N , one starts an advance to the left as in Fig. 4,
and similar considerations apply.

The θ parameter that advances or delays the deriva-
tive perpendicular to the integration direction is empirically

Fig. 4 The Cauchy–Riemann equations in Cartesian coordinates can
be used to explore a strip, first upwards along the y axis, then left-
wards along the x axis. In this use one only needs analyticity of the
function on a strip above (or below) the axis to obtain information on
the Minkowski side. The method fails only if the complex plane is
completely cut from −∞ to ∞ along the y axis

fixed for now. Several problems are somewhat independent
of θ , others have a broad minimum of instability around −1.
We find that θ = −0.5 is as good as any. A brief eigenvalue
analysis is presented below that explains why, in Sect. 4.2.

To show a test of the method, we employ the simple func-
tion

ftest(z) = 1

1 + z2/4
, (18)

which has two poles above and below the x axis at ±2i.
Because of the fast build-up of numerical errors, we need
	y < 	x, so the strip is always shorter in the direction of
the advance of the integration (for an N × N problem). In
Figs. 5 and 6, we show the real and imaginary parts cal-
culated with the Cauchy–Riemann equations with the ini-
tial condition on the positive real half-axis, plotted along the
imaginary and the negative real axis, respectively. Similarly
for the function cos(z) in Figs. 7 and 8.

The method starts to break down for x near zero and
y > 1, as the pole is approached. But one can see how the
part of the strip that goes well below the pole passes cleanly
and allows to one reproduce the function on the left axis,
given as initial condition the N exact values on the right
axis. All in all, the method provides a reasonable repre-
sentation of the function from the solution of the Cauchy–
Riemann equations. Note that the imaginary part, exactly
zero on the left axis, is calculated to be of order 1% with
a forty-point grid. This should be considered the error of the
method, and it is far less than the statistical errors in the lat-
tice data that we will shortly employ.

Should the analytic structure of the function become
available, one could devise an appropriate path in the com-
plex plane from the region where the function is known to
the region where it is wanted by analytical continuation. The
initial value problem can then be formulated with the ad-
vance direction along the tangent vector to the path, τ . This
vector changes orientation in principle, so one would need
to use the “Cartesian-like” formulation to advance and the
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Fig. 5 The function ftest(z) = 1
1+z2/4

analytically continued from

(x > 0, y = 0) to (x = 0, y > 0), with the Cauchy–Riemann equations.
The imaginary part is exactly zero on this imaginary axis, and the func-
tion has a pole at y = 2

Fig. 6 The function ftest(z) = 1
1+z2/4

analytically continued from

(x > 0, y = 0) to (x < 0, y = 0), with the Cauchy–Riemann equations

“polar-like” formulation to rotate the direction of advance,
in alternate steps.

3.3 Wick rotation of the quark mass function

In the introduction we have advanced, in Fig. 1, our main
application, the analytical continuation of the quark mass
function M(p2) in Landau gauge, which we now carefully
analyze and justify.

Fig. 7 As in Fig. 5, but for the function cos z

Fig. 8 As in Fig. 6, but for the function cos z

Because of Lorentz invariance applied to a spin 1/2
fermion, the quark propagator can be written in full gen-
erality as

S(p) = iZ(p2)� p
p2 − M2(p2)

+ iZ(p2)M(p2)

p2 − M2(p2)
. (19)

As already discussed, the pole in the denominator is a nui-
sance, usually disposed of by performing the Wick rotation
p0 → ip0

E. Concentrating on the denominator, we have

1

p2
0 − p2 − M2(p2

0 − p2)
→ −1

p2
0 + p2 + M2(−p2

0 − p2)
;

the pole is absent for real M . One usually eschews a sign, the
function M2(−p2

0 −p2) is customarily called M(p2
E), where

p2
E > 0, and we will keep this notation. Hence, to retrieve

the mass function that actually appears in the Minkowski
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space propagator for positive virtuality p2, we need to iden-
tify it with the analytical continuation of the lattice (or DSE)
M(p2

E) to negative p2. Note that although the analytical
continuation is nominally made in p0, since p2

0 − p2 is a
polynomial, it is an analytical function of p0. We conclude
that wherever M is analytical in p0 it is also analytical in
p2

0 − p2.
The analytical properties of M(p2) are not well known,

especially for confined quanta such as quarks. However,
we note that a pole in this function would imply a zero in
the quark propagator, and this, assumed continuous, can be
ruled out in the entire region of the complex plane that we
sample, from the lattice data on the Euclidean real p2 axis.

We take the lattice data from [15], see also [17]. This has
been provided to us from 283 × 96 lattices with MILC con-
figurations. We have used a−1 = 2.29 GeV to set the scale
from the internodal spacing.

Due to our sensitivity to large-frequency noise, we only
use a subset of the lattice data, taking one of every few
points in the interval p ∈ (0,8) GeV. The trimming has
been performed so that the resulting mass monotonously de-
creases towards higher momenta (asymptotic freedom), to
avoid distortions of analyticity and large errors through a
rapidly varying derivative. We further square the abscissa
p → p2, since the latter is the variable in which we perform
the analytical continuation. The original lattice data, already
in physical GeV units, is given in Fig. 9. We show the actual
input set to our code after these manipulations have been
performed, faithful to the original data and error bands, but
amenable to analytical continuation. The data are renormal-
ized in the MOM scheme, and, as can be seen, the mass
at a scale of 8 GeV is 60 MeV with the chosen scale a−1.
We further take as input the Dyson–Schwinger calculation
from [20]. This input has the advantage that there are no sta-
tistical errors and the function is very smooth. In exchange,
there are systematic errors (coming from the precise way in
which the quark–gluon vertex is treated in that reference),
which are unknown and only controllable in the propaga-
tor in comparison with lattice data or renormalization group
equations. We plot the resulting set in Fig. 10.

Finally, we perform the analytical continuation on a strip
in the complex plane above the axis, that presumably avoids
non-analyticities in M(p2) (else a continuation under the
axis is possible) and obtain the real part of M advanced in
the introduction in Fig. 1.

We also plot in Fig. 11 the imaginary part of the same
M function, which, as can be seen, is compatible with zero
within the error bands.

From the graphs one can conclude that, just as for
the tree-level propagator in perturbation theory, there is
a crossing of M and p for (negative Euclidean), positive
Minkowski p2. This means that the actual quark propaga-
tor does have a pole at or very near the real axis. It has

Fig. 9 A part of the lattice data for the quark mass function in Lan-
dau gauge QCD. We have trimmed the data to ensure the monotonous
decrease in the function and to reduce the high-frequency noise, which
grows fast in the Cauchy–Riemann equations. We slightly increased
the error bands to cover the omitted points (trading our systematic er-
ror in trimming into a statistical error). The lattice data from [15] is
normalized to a current quark mass of mu = 60 MeV

Fig. 10 Input calculation from the Dyson–Schwinger formalism. The
current quark mass is 2 MeV at 13 GeV. The function is smoother
than the lattice data, reducing high-frequency noise, but in exchange
its systematic errors are more difficult to control. The original function
reported in [20] decreases at very small momentum; we have been con-
servative and avoided this by a small variation of the vertex dressing
functions

been quoted [6] to be at (300–500) MeV from the Dyson–
Schwinger equations alone. From the analysis of the lattice
data set at hand, we conclude that M(M) = 305(25) MeV,
in agreement with that estimate. Of course, it would be in-
teresting to compare this with other lattice data sets, and in
particular use different current quark masses, so the error
band is definitely larger.
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Fig. 11 The Cauchy–Riemann method leads to an imaginary part of
the mass function on the left half-axis in Euclidean space that is well
compatible with 0. This is in agreement with the outcome of a Tay-
lor expansion around the origin (however, there is no way to tell the
convergence radius of such a series, so we deem the Cauchy–Riemann
method superior)

We do not find support for the attending conjecture of
two conjugate poles with a sizable imaginary part.

4 Some theoretical issues

4.1 Uniqueness

Here we study to what extent the solution of the Cauchy–
Riemann equations for the quark mass function is unique,
given the initial conditions as the lattice computation on
the positive p2

E half-axis. By standard complex analysis, the
uniqueness of an analytic continuation of a function is guar-
anteed if the function is initially known on an open subset
of C.

The positive real half-axis is open in R, but not in C.
However, it is easy to show that the analytic continuation
is unique. Imagine that u and v are known for y = 0 and
x > 0. Then, all partial derivatives ∂nu

∂xn and ∂nv
∂xn are known.

In particular, for the quark mass function, v(y = 0) = 0 (and
all x-derivatives also vanish), and u(x, y = 0) = M(x), the
real mass.

Assume that the extension of M to the complex plane
was not unique. Then, in addition to f = (u, v), there would
be another function, f + g, that would satisfy the Cauchy–
Riemann equations with the same initial conditions. Since
the sum of two analytic functions is analytic, g itself should
be analytic. This means that its components, gx and gy ,
would also satisfy the Cauchy–Riemann equations:

∂gx

∂y
= −∂gy

∂x
, (20)

∂gy

∂y
= ∂gx

∂x
, (21)

with initial condition g(y = 0) = 0 exactly, with all deriv-
atives ∂ng(y=0)

∂xn = 0 also vanishing on the real axis. Auto-
matically, employing (20), and subsequently deriving it, all
y-derivatives also vanish. Therefore, g is exactly zero in the
domain of analyticity, and f unique.

Of course, in practice f is only known at a discrete and
finite set of points zi = (xy,0), i = 1, . . . ,N . An analytic
function could oscillate between any two of the points and
take arbitrarily large or small values. Therefore, one needs
an additional hypothesis to claim that the computed function
is a fair representation of the “actual” function.

The sufficient hypothesis is monotony of the function be-
tween any two grid points (note that the function might be
globally non-monotonous by being allowed to change the
derivative sign at the grid points themselves). If the function
is strictly decreasing between xi and xi+1, then the maxi-
mum and minimum values that it can take between them are
fi and fi+1, and the function is bound (it being analytic, it is
also continuous). Then, to arbitrarily shrink the error in our
knowledge of the initial condition, one just needs to arbi-
trarily shrink the grid spacing, so as to further constrain the
function in every subinterval. The function computed with
the discretized Cauchy–Riemann equations will be as close
to the true function as the stability of the system allows,
given the bound error in the initial conditions.

For our example, the light quark propagator, there is es-
sentially no question that the mass function is monotonously
decreasing towards larger momenta. This is known at large
momentum from asymptotic QCD and at low momentum
from all studies of the Dyson–Schwinger equations and lat-
tice studies (where all non-monotonous behavior has way
less than 1σ significance and can be safely called noise).
The hypothesis of monotony can be checked (falsified) with
lattice data by simply decreasing the link size in the grid,
while at the same time reducing the statistical error bar.

One more caveat may be raised. Imagine adding to
the “actual” function f (u, v) another analytical function
g(u, v), such that g is very near zero on the right (Euclid-
ean) axis and very large on the left hand (Minkowski) side.
Then, while f + g does not exceed the error bars for f on
the initial data, it completely changes the answer on output,
since f + g is very different from f on the right half-axis.
Of course, the derivative of the function must be very large
around u = 0, since the function changes from very small
to sizable in a small interval. To bind this derivative from
above and exclude this unpleasant possibility, one needs to
demand an additional condition, since exact knowledge of
all derivatives of the function or knowledge of the function
in the entire interval is, in a computer grid representation,
unavailable.
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Now, a fast change of the derivative beyond what is vis-
ible from the data points implies that the second derivative
is not well represented by its discrete approximation. Here,
one may demand monotony of the second derivative of the
function between the last three (few) points of the grid on
the interval x1, x2, x3. This guarantees that the extrapola-
tion of the derivative at just the last grid point does not grow
arbitrarily, since the second derivative remains bound. This
is now quite a technical condition, and maybe not optimal,
others being possible.

4.2 Instability of large-frequency noise

Let us now consider the effect of a perturbation on the sys-
tem of Cauchy–Riemann equations (20). Since the system is
linear, it accepts a Fourier analysis. Let us perform it on the
x variable, so that the Fourier decomposition is

gx(x, y) = A(k, y)eikx, (22)

gy(x, y) = B(k, y)eikx .

Then the system of equations becomes

∂

∂y

(
A

B

)
=

[
0 −ik
ik 0

](
A

B

)
, (23)

and therefore
(

A

B

)
=

[
coshky −i sinhky

i sinhky coshky

](
A0

B0

)
(24)

in terms of the initial condition on the x axis. Obviously, if
the exact solution is initially perturbed due to computer inac-
curacies by an amount δA0, with B0 = δB0 = 0 for simplic-
ity, then at large distances the perturbation on the computed
solution exponentiates:

δA, δB ∝ eky |δA0|.
This could of course be anticipated by remembering

that the solutions of the Cauchy–Riemann equations are
two-dimensional harmonic functions, so that the separa-
ble solutions are sinusoidal functions times exponentials,
coskx cosh ky, etc.

This is especially worrisome when using Monte Carlo
data for the initial condition, since the local (high-k) noise
spoils the stability very soon. Thus, one needs to apply a
cooling algorithm or trim the data first to remove short-
distance fluctuations, justifying our keeping only part of the
lattice data to ensure monotony. Large-distance, systematic
shifts of the initial condition are less perturbing. In Fig. 12
we capture the u (real part) noisiest eigenvector of the itera-
tion matrix A−1B for a particular θ = −0.5 method for fixed
grid size, to show its increasing wavenumber.

Fig. 12 The most unstable eigenvector as a function of the number of
points transverse to the direction of advance, for the iteration matrix
in the Cauchy–Riemann θ = −0.5 discretization. The functions have
been vertically shifted for visibility

Table 1 Largest eigenvalue (one of a pair) for the iteration matrix of
the θ method

θ
	y
	x

|λ|

2.5 1 9.8

2.0 1 2.6

1.5 1 11

1.0 1 13

0.5 1 2.7

0.1 1 2.0

−0.1 1 1.8

−0.5 1 1.6

−1.0 1 11

−1.5 1 13

−2.0 1 2.7

−2.5 1 7.8

−0.5 1
2 1.4

−0.5 1
4 1.2

−0.5 1
6 1.14

−0.5 1
8 1.11

−0.5 1
10 1.08

The iteration matrix A−1B always has eigenvectors that
are larger than 1 in modulus. We have studied them for very
simple equispaced rectangular grids, with the direction of
advance along y. For a fixed ratio of the increments, 	y

	x
, the

largest eigenvalue is quite independent of the number of grid
points (this is obvious from the definition of the matrix). The
dependence on θ and 	y

	x
can be followed from Table 1.

Note from the table that, unlike for the heat equation,
the θ method is not convergent. We are not able to ap-
proach a given function with arbitrary accuracy, but only



566 Eur. Phys. J. C (2008) 56: 557–569

provide an estimate. It is apparent that decreasing the ad-
vance step 	y

	x
is not a winning strategy, since, for example,

fixing θ = −0.5, with 	y
	x

= 1, |λ| = 1.6, and to advance

the same distance with 	y
	x

= 1/10, one needs ten steps,
but 1.0810 = 2.1 > 1.6, meaning that with a smaller step,
one can advance less far in the progress direction, since er-
rors amplify faster. (Of course, by decreasing the step, one
does obtain a more reliable representation of the function for
short advance distances.)

4.3 Generalization to several complex variables

In principle, it would appear straightforward to generalize
the Wick rotation to several dimensions. For example, let us
consider a vertex function in field theory, say the quark and
gluon or the electron–photon three-point functions. These
are characterized by twelve Dirac tensors multiplied by the
amplitudes of the three independent Lorentz scalar vari-
ables, the squared momenta of each of the particles,

λi

(
p2

1,p
2
2, q

2), i = 1, . . . ,12.

Given the lattice data in Euclidean space,

λi

(
p2

1E,p2
2E, q2

E

)
, i = 1, . . . ,12,

one would need to perform the inverse Wick rotation to
negative p2

E in each of the variables, in practice solving
the Cauchy–Riemann equations variable by variable. Notice
that if the power-law solutions of [20] are correct, then one
expects a cut at zero virtuality, q2 = 0, in the gluon vari-
able, but this can be avoided by appropriately deforming the
region where one solves the Cauchy–Riemann equation.

Now let us examine a curious detail that does not come
about in one dimension. If there is only one variable,
p2 = 0 defines the light-cone in Minkowski space, a three-
dimensional manifold in four-dimensional space. However,
p2

E = 0 defines the origin in Euclidean space, this being
just a point (this is just another manifestation of the differ-
ence between the compact rotation group and the unbound
Lorentz group). The interesting observation is that, upon
Wick rotation, f (p2

E = 0), the value of a Green’s function at
one point in Euclidean space, becomes f (p2 = 0), the value
of the same Green’s function on the entire light-cone.

But what happens in more dimensions? One may know
the value of the function λ(p2

E1 = 0,p2
E2,p

2
E2) in Euclidean

space at the origin for the variable pE1. But in Minkowski
space, p2

1 = 0 does not imply p1 = 0; hence the function
takes different values for different points of the p1 light-
cone, λ(p2

1 = 0,p2
2, (p1 −p2)

2), which do not coincide with
the value at the origin in Euclidean space.

This comes about because in a three-point function there
are two reference four-vectors, p1 and p2, and while the
Euclidean point with p1 = 0 is at a fixed distance from the
p2 = 0 point, its Minkowski image is not.

4.4 Taylor expansion

Analytical functions accept Taylor expansions of the type

f (z) =
∞∑

n=0

(z − z0)
n

n! f (n)(z0). (25)

One could think of performing a polynomial fit to a given
set of data points (zi, f (zi)) to represent the function within
the radius of convergence of the series. One would simply
need to solve the Vandermonde system for N points,

f (zi) =
N∑

n=0

(z − z0)
N

(
f (n)(z0)

n!
)

. (26)

For example, expanding around the origin, the matrix of
coefficients for the linear system is the Vandermonde ma-
trix with rows (1, zi , z

2
I , . . . , z

N
i ). Once the system has been

solved for the derivatives (
f (n)(z0)

n! ), they can be substituted
in (25) to obtain the function at an arbitrary point.

One could argue that this is the simplest local imple-
mentation of analyticity, and one may wonder why one
should worry about the Cauchy–Riemann equations at all.
Of course, in practice monotony is difficult to achieve with
a finite number of polynomials: the approximant will oscil-
late between the tabulated grid points with the lattice data.
In addition, should there be a cut starting at p2 = 0 in the
complex plane, that would not be surprising in view of the
power-law representations reported in the literature for other
Green’s functions [6]; the radius of convergence of the Tay-
lor series would exactly be zero. Although such difficulties
can be circumvented, a practical implementation would be-
come as difficult or more difficult than the Cauchy–Riemann
equations. We have not pursued this matter further.

5 Summary and conclusions

We have presented a first analysis of the Cauchy–Riemann
equations as applied to performing the inverse Wick rotation
from Euclidean to Minkowski momenta. Given that their
square is the elliptic Laplace equation, and that they are not
of variational type [21], we do not have a trivial method to
solve them to arbitrary accuracy. However, they provide an
estimate of a function by analytical continuation as an ini-
tial value problem, that which relies only on the existence of
a path on the complex plane that is free from singularities.
While much mathematical literature exists [22] and more so-
phisticated solution methods have been reported, the very
elementary methods presented here are sufficient to gain in-
sight into the quark propagator mass function.

We obtain, after analytical continuation of the lattice
QCD data, qualitatively backed up by a Dyson–Schwinger



Eur. Phys. J. C (2008) 56: 557–569 567

calculation, and in agreement with recent studies, a pole of
the quark propagator in Landau gauge QCD at or very near
the real axis, with a mass of 305(25) MeV. We find no sup-
port for the sometimes conjectured pair of complex conju-
gate poles.
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Appendix: Lorentz invariant discretizations
in Minkowski space

Physical states provide representations of the rotation group.
In lattice gauge theory, the symmetry of the grid reclassifies
the states but at least offers some control over what signal
may belong to what spin multiplet. This is because the lat-
tice is invariant under a subgroup of the rotation group, typi-
cally tagged by a minimum angle θ = 90 degrees. Likewise,
the grid is invariant under a subset of the translation group
characterized by the grid spacing a.

However, there is no equivalent parameter for finite grids
in Minkowski space. A grid that is invariant under dis-
crete Lorentz transformations has infinitely many points
(and is therefore not tractable on a computer). We discuss
this shortly as one more advantage of working in Euclidean
space that may come into play when computing pdf’s or re-
ducing Green’s functions in non-equal-time gauges such as
the light-front gauge.

To see this, it is easiest to observe that Lorentz trans-
formations map the light-cone to itself, acting as dilata-
tions [19] within this manifold. To see it, it is simpler to
work in 1 + 1 dimensions, where the light-cone becomes
the pair of lines

x = t; x = −t.

The action of the Lorentz boost becomes
(

t1
x1

)
=

(
γ βγ

βγ γ

)(
t0

x0 = t0

)
, (27)

hence

x1 = t1 = t0(γ + βγ ), (28)

a dilatation of the parameter γ (1 + β). There is now an ob-
vious way to construct a discretization of the light-cone that
is invariant under Lorentz transformations of a fixed para-
meter γ . Simply pick an arbitrary point (t0, x0) and obtain

Fig. 13 A Lorentz transformation acts on the light-cone simply as a
dilatation. Shown is a discretization invariant under a discrete Lorentz
transformation, where each point on the plot is the Lorentz transformed
point of its nearest neighbor towards the origin of coordinates. Note
that this discrete transformation of the parameter Λ ≡ γ (1 + β) be-
longs to a subgroup of transformations with parameters Λ2, . . . ,Λn,
etc.

the sequence (t1, x1), (t2, x2), . . . obtained by successively
applying (27) to it. The infinite sequence so obtained is such
that every point j is the image of another point j − 1 under
a Lorentz transformation, except for j = 0. To generate this
one, we furthermore need to also include in the discretiza-
tion all points obtained by successively applying to (t0, x0)

the inverse Lorentz transformation:
(

t−j

x−j

)
=

(
γ −βγ

−βγ γ

)(
t−j+1

x−j+1 = t−j+1

)
. (29)

Thus, it appears that we have a simple discretization of
the line x = t that is invariant under discrete Lorentz trans-
formations (dilatations in this line). It is, however, not in-
variant under translations, as the spacing between points
xj − xj−1, j > 0, increases in proportion to their distance
to the origin. Therefore, as is well known, one cannot con-
struct a web that is simultaneously translation and Lorentz
invariant, even under discrete Lorentz transformations.

This is different from the Euclidean space case, where
the translationally-invariant Bravais lattices are also invari-
ant under the discrete rotations of their corresponding crys-
tallographic point group [18].

Moreover, grids that are invariant under a discrete Lorentz
transformation have infinitely many points dense at the ori-
gin and infinity.

To construct a discretely Lorentz invariant lattice of the
entire 1 + 1 dimensional space, we just have to write down
a discretization in which every point is the Lorentz trans-
formed point of another one (and every Lorentz transformed
point belongs to the lattice). Since Lorentz transformations
leave the metric invariant, the hyperbolae k2 = (k0)2 −
(k2) = m2 are invariant; that is, it is sufficient to construct a
discretization of the hyperbola of (mass) parameter m. For
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this, all one needs to do is to choose a point y0 on the hyper-
bola and the discrete Lorentz transformation of parameter γ ,
and apply the Lorentz transformation and its inverse to gen-
erate the sequence of points

yn = Λ(γ )ny0, y−n = Λ(γ )−ny0.

Once this has been achieved, it is sufficient to pick up a set
of hyperbolae to cover the entire space at wish and this com-
pletes the discretization.

To construct it, we start with a y0 lattice in which there
are points over both coordinate (x, t) axes. Then we obtain
two families of hyperbolae with equations

H1 = x2 − (ct)2

a2
i

= 1,

H2 = (ct)2 − x2

a2
i

= 1,

(30)

where ai = ia is the distance between their vertices (which
will coincide with the chosen y0) and the origin of the coor-
dinates.

Note that the fact that a point and its Lorentz transformed
point belong to H1 or H2 depends on whether the point lies
within the forward or backward light-cones (hyperbolae of
type H2) or not (hyperbolae of type H1). Note also that the
successive Lorentz transformed images of a point under a
discrete boost do not fill the hyperbola; they define a discrete
lattice over it. All that remains to find is this subset of points.

A geometric way to map the discretization of one hy-
perbola to all others is to simply take straight lines through

Fig. 14 The intersection points of a family of hyperbolae and a family
of straight lines define a Lorentz invariant lattice of 1 + 1 dimensional
Minkowski space. The number of points in the lattice is infinite for any
discrete set of boosts of parameter ϕ

every point on the lattice covering the reference hyperbola
and the origin.

This family of straight lines follow either of the rules (de-
pending on the sign of the discrete Lorentz transformation
employed in the construction):

(ct) = (
tanh(iϕ)

)
x,

(ct) = 1

tanh(iϕ)
x,

(31)

where ϕ is the discrete hyperbolic angle labeling the boost,
and i the number of direct (positive i) or inverse (negative i)
Lorentz transformations of the initial vertex.

Combining (30), and (31), we finally construct a Lorentz
invariant lattice in (1 + 1) dimensions of a chosen ϕ para-
meter at the intersections of the two families. The situation
is plotted in Fig. 14.

Now, it is easy to observe that the hyperbolae contain all
the images under direct and inverse Lorentz transformations
of the vertex y0, while the family of straight lines connect
the points that correspond to the Λi image of each vertex
across a family of hyperbolae.
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